Ich habe eine Zeitreihe von Aktienkursen und möchte den gleitenden Durchschnitt über ein zehnminütiges Fenster berechnen (siehe Grafik unten). Da Preis-Ticks sporadisch auftreten (d. H. Sie sind nicht periodisch), scheint es am schönsten, einen zeitlich gewichteten gleitenden Durchschnitt zu berechnen. In dem Diagramm gibt es vier Preisänderungen: A, B, C und D, wobei die letzteren drei innerhalb des Fensters auftreten. Beachten Sie, dass, weil B nur einige Zeit in das Fenster (z. B. 3 Minuten) auftritt, der Wert von A noch zur Berechnung beiträgt. In der Tat, so weit ich sagen kann, sollte die Berechnung ausschließlich auf den Werten von A, B und C (nicht D) und den Zeitabständen zwischen ihnen und dem nächsten Punkt (oder im Falle von A: die Dauer zwischen dem Start Des Zeitfensters und B). Anfänglich wird D keine Wirkung haben, da seine Zeitwichtung Null ist. Ist das korrekt? Angenommen, das ist richtig, meine Sorge ist, dass der gleitende Durchschnitt mehr als die nicht gewichtete Berechnung (die für den Wert von D sofort Rechnung) lag, aber die nicht gewichtete Berechnung hat seine eigenen Nachteile: A würde Haben so viel Wirkung auf das Ergebnis wie die anderen Preise, obwohl sie außerhalb des Zeitfensters. Eine plötzliche Aufregung von schnellen Preis-Ticks würde stark beeinträchtigen den gleitenden Durchschnitt (obwohl vielleicht dies ist wünschenswert) Kann jeder bieten einen Rat, über welchen Ansatz scheint am besten, oder ob theres eine alternative (oder Hybrid-) Ansatz wert der Prüfung gefragt Apr 14 12 at 21: 35 Ihre Argumentation ist richtig. Was wollen Sie den Durchschnitt für verwenden, obwohl ohne zu wissen, dass seine schwer, einen Rat geben. Möglicherweise wäre eine Alternative, Ihren laufenden Durchschnitt A zu betrachten, und wenn ein neuer Wert V hereinkommt, berechnen Sie den neuen Durchschnitt A, um (1-c) AcV zu sein, wobei c zwischen 0 und 1 ist. Auf diese Weise haben die neueren Zecken Ein stärkerer Einfluss, und die Wirkung der alten Zecken im Laufe der Zeit zerstreut. Man könnte sogar c abhängen von der Zeit seit den vorherigen Zecken (c immer kleiner als die Zecken näher kommen). In dem ersten Modell (Gewichtung) würde der Durchschnitt jede Sekunde unterschiedlich sein (da alte Ablesungen ein geringeres Gewicht und neue Ablesungen höher erhalten), so daß sie sich stets ändern, was nicht wünschenswert sein kann. Mit dem zweiten Ansatz, die Preise machen plötzliche Sprünge, wie neue Preise eingeführt werden und alte verschwinden aus Fenster. Die beiden Vorschläge kommen aus der diskreten Welt, aber Sie könnten eine Inspiration für Ihren speziellen Fall zu finden. Werfen Sie einen Blick auf exponentielle Glättung. In diesem Ansatz stellen Sie den Glättungsfaktor (01) ein, mit dem Sie den Einfluss der letzten Elemente auf den Prognosewert ändern können (ältere Elemente werden exponentiell abnehmende Gewichte zugewiesen): Ich habe eine einfache Animation erstellt, wie die exponentielle Glättung den Verlauf verfolgen würde Eine einheitliche Zeitreihe x1 1 1 1 3 3 2 2 2 1 mit drei verschiedenen: Schauen Sie sich auch einige der Verstärkungstechniken an (siehe die verschiedenen Diskontierungsmethoden) zum Beispiel TD-Learning und Q-Learning. Ja, der gleitende Durchschnitt wird natürlich verzögern. Dies liegt daran, seinen Wert historische Informationen: es fasst Proben des Preises in den letzten 10 Minuten. Diese Art von Durchschnitt ist inhärent laggy. Es hat eine eingebaute in fünf Minuten Versatz (weil eine Box Durchschnitt ohne Offset auf - 5 Minuten basieren würde, auf die Probe zentriert). Wenn der Preis längere Zeit bei A liegt und sich dann einmal um B ändert, dauert es 5 Minuten, bis der Durchschnitt (AB) 2 erreicht ist. Wenn Sie eine Funktion ohne eine Verschiebung in der Domäne durchführen möchten, hat das Gewicht Um gleichmäßig um den Probenpunkt verteilt zu sein. Aber das ist unmöglich, für die Preise in Echtzeit auftreten, da künftige Daten nicht verfügbar ist. Wenn Sie möchten, dass eine neue Änderung, wie D, einen größeren Einfluss haben, verwenden Sie einen Durchschnitt, der ein größeres Gewicht auf die jüngsten Daten oder einen kürzeren Zeitraum oder beides gibt. Eine Möglichkeit, Daten zu glätten, besteht einfach darin, einen einzigen Akkumulator (den geglätteten Schätzer) E zu verwenden und periodische Abtastwerte der Daten S E zu nehmen. E wird wie folgt aktualisiert: Ie. Wird ein Anteil K (zwischen 0 und 1) der Differenz zwischen der aktuellen Preisstichprobe S und der Schätzfunktion E zu E addiert. Angenommen, der Preis ist für A lange Zeit bei A, so daß E bei A liegt und sich dann plötzlich ändert Zu B. Der Schätzer beginnt sich in exponentieller Weise zu B zu bewegen (wie Heizkühlung, Ladeentladung eines Kondensators usw.). Am Anfang wird es einen großen Sprung, und dann kleinere und kleinere Schritten. Wie schnell es sich bewegt, hängt von K. Wenn K 0 ist, bewegt sich der Schätzer überhaupt nicht, und wenn K 1 ist, bewegt er sich sofort. Mit K können Sie einstellen, wie viel Gewicht Sie dem Schätzer gegenüber der neuen Probe geben. Mehr Gewicht wird auf neuere Beispiele implizit gegeben, und das Musterfenster erstreckt sich grundsätzlich auf unendlich: E basiert auf jeder Wertprobe, die jemals aufgetreten ist. Obwohl natürlich sehr alte haben keinen Einfluss auf den aktuellen Wert. Eine sehr einfache, schöne Methode. Dies ist die gleiche wie Tom39s Antwort. Seine Formel für den neuen Wert des Schätzers ist (1 - K) E KS. Die algebraisch gleich E K (S - E) ist. Es ist eine quotlineare Blendingfunktion quot zwischen dem aktuellen Schätzer E und dem neuen Abtastwert S, wobei der Wert von K 0, 1 die Mischung steuert. Schreibe es so ist schön und nützlich. Wenn K 0.7 ist, nehmen wir 70 von S und 30 von E, die die gleiche wie die Addition von 70 der Differenz zwischen E und S ist zurück zu E. ndash Kaz Apr 14 12 um 22:15 Bei der Expansion Toms Antwort, die Formel (Tt - t n - 1) T, dh a ist ein Verhältnis von Delta der Ankunftszeit über dem Mittelungsintervall v 1 (vorherige Verwendung verwenden), um den Abstand zwischen den Zecken zu formalisieren (enge Zecken haben eine proportional geringere Gewichtung) Punkt) oder v (1 - u) a (lineare Interpolation oder vu (nächster Punkt) Weitere Informationen finden Sie auf Seite 59 des Buches Eine Einführung in die Hochfrequenzfinanzierung. Wie andere erwähnt haben, sollten Sie eine IIR (unendlich Impulsantwort) Filter anstelle des FIR (Finite-Impulse-Response) - Filters, den Sie jetzt verwenden, mehr dazu, aber auf den ersten Blick sind FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert In-Mikrocontrollern ist ein einpoliges Tiefpassfilter, das digitale Äquivalent eines einfachen RC-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Auf kleinen Systemen wählen Sie FF auf 12 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise könnte FF 116 sein und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich nehme in der Regel AD-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dBoktave über der Rolloff-Frequenz. Allerdings für AD-Lesungen seine in der Regel mehr relevant, um das Filter im Zeitbereich zu betrachten, indem man seine Schrittantwort. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind daher in diesem Fall 116. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie etwa 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Auf kleinen Systemen wird FF gewöhnlich mit 12 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie z. B. 10-Bit-AD-Lesungen und N 4 (FF 116) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-AD-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-AD-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der AD-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die subroutinemacro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pole ist die NEUE Der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ist ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele sind als Makros mit meinem PIC-Assembler-Präprozessor implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben, dann mehrfach anwenden. Tatsächlich schreibe ich normalerweise solch eine Unterroutine, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn den Zeiger voranbringen lassen, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie sollten immer erwägen, einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Setzen des Wertes von alpha auf 1K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequencySampleRate) einen Bereich zwischen 0 und 0,5 hat. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguidech19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, Sie wollen die vorherigen, etwa 6 Artikeln gemittelt, diskret tun es, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 16 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUMN aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample in SUM - SUMN kommt, fügen Sie das neue Sample hinzu und geben SUMN aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben einen First-Order IIR-Filter der Wert you39re Subtraktion isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 um 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und schrittweise Pegel in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser als ein Box-Filter ist, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine nasty d2dt Spike haben, wenn die Eingangsänderung und wieder 1ms später, aber das Minimum haben wird Mögliche ddt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Biastruncation). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 12N2, aber das wird nicht wirklich lösen das Präzisionsproblem. In diesem Fall bleibt die abnehmende Reihe für immer bei 8, bis die Probe 8-12 (N2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil dieses C-Algorithmus für Null-Latenz-exponentiellen gleitenden Durchschnitt Letzte Änderung: 2012-08-13 Ich habe versucht, eine Niederfrequenz-Cutoff in c, die im Wesentlichen nimmt einen Strom von Zahlen und glättet die Ausgabe (Filterung von hoher Frequenz Bewegungsjitter), es ist jedoch wichtig, dass die vorgewichteten Zahlen sofort als die Daten betrachtet werden, die zeitkritisch sind (es ist, eine Bewegungssimulationsbasis unter Verwendung einer Ausgabe von einer kleinen Spielsoftware zu steuern). Ive bekam einen funktionierenden gewichteten gleitenden Durchschnitt Algoithm, konnte aber mit etwas ein wenig mehr reagieren an der Vorderseite zu tun, und ich fand dies: - Der Pseudo-Code gibt es wie folgt: Eingaben: Preis (NumericSeries), Period (NumericSimple) Variablen: Faktor 2 (Period1) Verzögerung (Periode-1) 2 Ende sonst beginnen ZLEMA-Faktor (2Price-Pricelag) (1-Faktor) ZLEMA1 Ende Ive übersetzte es in Zu C und mein Code ist wie folgt: Allerdings scheint es nicht so zu verhalten, wie Id erwarten. Es scheint fast da, aber manchmal bekomme ich einen etwas niedrigeren Wert als alle Elemente in der Warteschlange (wenn sie alle höher sind). Meine Warteschlange und die Anzahl der Elemente in ihr als Parameter übergeben werden, mit der jüngsten an der Front zu allen Zeiten, auch ich passieren einen inkrementierenden Zähler beginnend bei 0, wie von der Funktion erforderlich. Ich bin nicht sicher, Ive interpretiert die Bedeutung von ZLEMA1 korrekt als seine nicht klar, in seinem Pseudocode, so dass Ive davon ausgegangen, dass die letzten Anrufe zlema und auch Im Annahme Preis tatsächlich bedeutet Price0. Vielleicht Ive erhielt dieses falsch Ich soll die wirklichen zlema berechneten Werte zurück zu meiner ursprünglichen Warteschlange vor dem folgenden Anruf kopieren Ich ändere nicht die ursprüngliche Warteschlange an allen anderen als nur, alle Werte eins bis zum Ende zu verschieben und das späteste am Anfang einzusetzen . Der Code, den ich verwenden, um dies zu tun ist: Wäre äußerst dankbar, wenn jemand mit einem besseren Verständnis der Mathematik könnte bitte Verstand überprüfen dies für mich zu sehen, ob Ive etwas etwas falsch Vielen Dank im Voraus, wenn Sie helfen können Erstens Dank allen für Ihre Eingabe, sehr geschätzt Das macht Sinn, denke ich, so nehme ich an, dann das Beste, das ich hoffen kann, ist einfach ein exponentieller gleitender Durchschnitt, akzeptiert wird es ein wenig Verzögerung, aber dies wird durch die schwerere Front Gewichtung als in typisch gewichtet gegeben minimiert werden Ich habe auch diesen Algorithmus, aber ein ähnliches Problem, dass die Werte nicht ganz richtig erscheinen (es sei denn, dies ist die Art der Formel). Zum Beispiel, sagen, mein Array enthält 16 Werte, alle 0.4775 - die Ausgabe ist 0.4983, aber Id erwarten, dass es 0.4775 Dies schaut nach rechts zu Ihnen. Exponentieller gleitender Durchschnitt. Statischer Schwimmerfaktor 0 statischer Schwimmer lastema 0 float ema if (currentSample lt 1) ema vals0 Faktor 2.0 ((float) numVals) 1.0) sonst ema (Faktor vals0) ((1.0 - Faktor) lastema) lastema ema return ema Umgekehrt, manchmal ist der Ausgang niedriger als jeder und jeder der Eingänge, auch wenn alle höher sind. Es wird auf die gleiche Weise wie zlema (.) Oben mit einem inkrementierenden Zähler aufgerufen. Die Formel und Pseudocode für diese sind hier: - autotradingstrategy. wordpress20091130exponential-moving-average Danke nochmals, entschuldigt sich für mein Missverständnis von einigen der Grundlagen: (Viele Grüße, Chris J Wie für den Code, den ich gepostet, youre Recht über die Array-Größe Situation: Die Filterkonstante ist eine Frequenzabschaltung. Ich habe eine digitale Signalverarbeitung (DSP) für diese Technik. De. wikipedia. orgwi kiLow-pas sfilter ist eine einfache Erklärung. Sie möchten die Discrete-Time-Realisierung. In meinem Fall ist die A die RC-Konstante, über die sie sprechen. Also die Frequenz, die es ausschneidet ist über 1 (2piA). Wenn Sie nicht über ein Verständnis von Frequency-Domain Theorie haben, kann dies kompliziert. In Ihrem Fall, Je höher Sie A, desto niedriger die Frequenz, die dieser Filter zulassen wird, bedeutet, dass es die Kurve aus mehr und mehr glätten wird. Je niedriger Sie es machen, desto mehr Rauschen ist im System erlaubt. Denken Sie daran, dass ein Muss größer oder gleich 1 wirksam sein muss. Ich habe die XLS wieder befestigt, diesmal ohne die wechselnden rand () Zahlen. Passen Sie die A-Konstante an und beobachten Sie, wie es quotsmoothsquot (oder filtert) die hochfrequenten Variationen. 2) Der letzte Punkt des Eingabefeldes hat den letzten Wert. 3) Gleiches gilt für das Ausgabe-Array. Der letzte ist der jüngste Wert. 5) Die NUMVALS ist beliebig. Sie können kontinuierlich auf die Eingabe-und Ausgabe-Array so oft wie youd wie hinzufügen und es würde nicht den Filter. Insbesondere verwendete ich 49 Punkte. Aber ich kann leicht löschen Sie die letzten 20 und die ersten 29 Ausgänge bleiben die gleichen. Die Funktion basiert nicht darauf, wie viele Punkte verwendet werden. Ich möchte erwähnen, dass ich diese Funktion für eine einmalige Konvertierung entwickelt habe. Wenn Sie eine Umwandlung für den nächsten Wert on the fly tun wollten, konnten Sie etwas einfacheres versuchen (wie angebracht). Wieder Im rostig auf c. Ich hoffe, das ist richtig. Das einzige, was Sie benötigen, um zu liefern ist die Eingangs - und Filterkonstante. Lassen Sie mich wissen, wenn dies hilft.
No comments:
Post a Comment